Immunoinformatics and Bioinformatics
Pattern discovery in sequences is an important unsolved problem in biology, with many applications, including detecting regulation of genes by transcription factors, and differentiating proteins of infecting organisms such as viruses from an animal’s own genome. Our work describe some of the recent statistical approaches developed to address these problems, and some possible future directions for progress in this field.
In particular, protein antigens and their specific epitopes are formulation targets for epitope-based vaccines. In 2008, a number of prediction servers were available for identification of peptides that bind major histocompatibility complex class I (MHC-I) molecules. The lack of standardized methodology and large number of human MHC-I molecules made the selection of appropriate prediction servers difficult. Our work reported a comparative evaluation of thirty prediction servers for seven human MHC-I molecules. This work has been heavily cited since its publication.
Pattern discovery in sequences is an important unsolved problem in biology, with many applications, including detecting regulation of genes by transcription factors, and differentiating proteins of infecting organisms such as viruses from an animal's own genome. In this article we describe some of the recent statistical approaches developed to address these problems, and some possible future directions for progress in this field. 2012 Elsevier B.V.
Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation. Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods. Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics. 2012 Ray, Pyne.
Background: The widely used k top scoring pair (k-TSP) algorithm is a simple yet powerful parameter-free classifier. It owes its success in many cancer microarray datasets to an effective feature selection algorithm that is based on relative expression ordering of gene pairs. However, its general robustness does not extend to some difficult datasets, such as those involving cancer outcome prediction, which may be due to the relatively simple voting scheme used by the classifier. We believe that the performance can be enhanced by separating its effective feature selection component and combining it with a powerful classifier such as the support vector machine (SVM). More generally the top scoring pairs generated by the k-TSP ranking algorithm can be used as a dimensionally reduced subspace for other machine learning classifiers.Results: We developed an approach integrating the k-TSP ranking algorithm (TSP) with other machine learning methods, allowing combination of the computationally efficient, multivariate feature ranking of k-TSP with multivariate classifiers such as SVM. We evaluated this hybrid scheme (k-TSP+SVM) in a range of simulated datasets with known data structures. As compared with other feature selection methods, such as a univariate method similar to Fisher's discriminant criterion (Fisher), or a recursive feature elimination embedded in SVM (RFE), TSP is increasingly more effective than the other two methods as the informative genes become progressively more correlated, which is demonstrated both in terms of the classification performance and the ability to recover true informative genes. We also applied this hybrid scheme to four cancer prognosis datasets, in which k-TSP+SVM outperforms k-TSP classifier in all datasets, and achieves either comparable or superior performance to that using SVM alone. In concurrence with what is observed in simulation, TSP appears to be a better feature selector than Fisher and RFE in some of the cancer datasets. Conclusions: The k-TSP ranking algorithm can be used as a computationally efficient, multivariate filter method for feature selection in machine learning. SVM in combination with k-TSP ranking algorithm outperforms k-TSP and SVM alone in simulated datasets and in some cancer prognosis datasets. Simulation studies suggest that as a feature selector, it is better tuned to certain data characteristics, i.e. correlations among informative genes, which is potentially interesting as an alternative feature ranking method in pathway analysis. 2011 Shi et al; licensee BioMed Central Ltd.
Protein microarrays are a high-throughput technology capable of generating large quantities of proteomics data. They can be used for general research or for clinical diagnostics. Bioinformatics and statistical analysis techniques are required for interpretation and reaching biologically relevant conclusions from raw data. We describe essential algorithms for processing protein microarray data, including spot-finding on slide images, Z score, and significance analysis of microarrays (SAM) calculations, as well as the concentration dependent analysis (CDA). We also describe available tools for protein microarray analysis, and provide a template for a step-by-step approach to performing an analysis centered on the CDA method. We conclude with a discussion of fundamental and practical issues and considerations. 2011, Springer Science+Business Media, LLC.
Background: Protein antigens and their specific epitopes are formulation targets for epitope-based vaccines. A number of prediction servers are available for identification of peptides that bind major histocompatibility complex class I (MHC-I) molecules. The lack of standardized methodology and large number of human MHC-I molecules make the selection of appropriate prediction servers difficult. This study reports a comparative evaluation of thirty prediction servers for seven human MHC-I molecules. Results: Of 147 individual predictors 39 have shown excellent, 47 good, 33 marginal, and 28 poor ability to classify binders from non-binders. The classifiers for HLA-A*0201, A*0301, A*1101, B*0702, B*0801, and B*1501 have excellent, and for A*2402 moderate classification accuracy. Sixteen prediction servers predict peptide binding affinity to MHC-I molecules with high accuracy; correlation coefficients ranging from r = 0.55 (B*0801) to r = 0.87 (A*0201). Conclusion: Non-linear predictors outperform matrix-based predictors. Most predictors can be improved by non-linear transformations of their raw prediction scores. The best predictors of peptide binding are also best in prediction of T-cell epitopes. We propose a new standard for MHC-I binding prediction - a common scale for normalization of prediction scores, applicable to both experimental and predicted data. The results of this study provide assistance to researchers in selection of most adequate prediction tools and selection criteria that suit the needs of their projects. 2008 Lin et al; licensee BioMed Central Ltd.
Background. A key step in the development of an adaptive immune response to pathogens or vaccines is the binding of short peptides to molecules of the Major Histocompatibility Complex (MHC) for presentation to T lymphocytes, which are thereby activated and differentiate into effector and memory cells. The rational design of vaccines consists in part in the identification of appropriate peptides to effect this process. There are several algorithms currently in use for making such predictions, but these are limited to a small number of MHC molecules and have good but imperfect prediction power. Results. We have undertaken an exploration of the power gained by taking advantage of a natural representation of the amino acids in terms of their biophysical properties. We used several well-known statistical classifiers using either a naive encoding of amino acids by name or an encoding by biophysical properties. In all cases, the encoding by biophysical properties leads to substantially lower misclassification error. Conclusion. Representation of amino acids using a few important bio-physio-chemical property provide a natural basis for representing peptides and greatly improves peptide-MHC class I binding prediction. 2007 Ray and Kepler; licensee BioMed Central Ltd.